

SANTOPRENE™ 201-64 - TPV

Product Description

A soft, colorable, versatile thermoplastic vulcanizate (TPV) in the thermoplastic elastomer (TPE) family. This material combines good physical properties and chemical resistance for use in a wide range of applications. This grade of SantopreneTM TPV is shear-dependent and can be processed on conventional thermoplastics equipment for injection molding, extrusion or blow molding. It is polyolefin based and recyclable within the manufacturing stream.

Characteristics

Applications Automotive - Plugs, Bumpers, Grommets, Clips, Automotive - Seals and Gaskets, Industrial -

Seals and Gaskets, Soft Touch Grips, Tubing

Uses Appliance components, Automotive applications, Automotive interior trim, Automotive under

the hood, Consumer applications, Diaphragms, Electrical parts, Gaskets, Seals, Tubing

Agency Ratings UL QMFZ2, UL QMFZ8

UL File Number E80017

Color Natural color

Delivery Form Pellets

Processing Blow molding, Coextrusion, Extrusion blow molding, Injection blow molding,

Injection molding, Multi injection molding, Profile extrusion, Sheet extrusion

Physical properties		Value	Unit	Test Standard
Density		0.97	g/cm ³	ASTM D792
Density		970	kg/m³	ISO 1183
Detergent resistance	f3		-	UL 749
Detergent resistance	f4		-	UL 2157
Hardness		Value	Unit	
Shore A hardness-TPE, 15s		69		ISO 868
Mechanical properties		Value	Unit	Test Standard
Tensile stress at 100%, perpendicular		2.6	MPa	ASTM D412
Tensile stress at 100%, perpendicular		2.6	MPa	ISO 37
Tensile strength at break elast, perpendicular		7	MPa	ASTM D412
Tensile stress at break, perpendicular		7	MPa	ISO 37
Elongation at break elast, perpendicular		450	%	ASTM D412
Tensile strain at break, perpendicular		450	%	ISO 37
Tear strength, Method Ba, perpendicular		22	kN/m	ISO 34-1
Compression set, 70°C, 22h, Type 1, Method B		18	%	ASTM D395
Compression set, 70°C, 22h, Type A		18	%	ISO 815
Compression set, 125°C, 70h, Type 1, Method B		44	%	ASTM D395
Compression set, 125 °C, 70h, Type A		44	%	ISO 815
Thermal properties		Value	Unit	Test Standard
Brittleness temperature		-60	°C	ASTM D746
RTI Elec		100	°C	UL 746
RTI Str, 1.0 mm		90	°C	UL 746
RTI Str, 1.5 mm		90	°C	UL 746
RTI Str., 3.0 mm		95	°C	UL 746

Created: 18-Feb-2022 Page: 1/3

Revised: 11-Feb-2022 Source: Celanese Materials Database

SANTOPRENE™ 201-64 - TPV

Electrical properties	Value	Unit	Test Standard
Dielectric Strength, 2.0 mm	30	kV/mm	ASTM D149
Dielectric Constant 60Hz, 1.98 mm	2.3	-	ASTM D150
Dielectric Constant 60Hz, 1.98 mm	2.3	-	IEC 60250
Comparative tracking index	PLC 0	-	UL 746
High amp arc ignition (HAI)	PLC 0	-	UL 746
High voltage arc resistance to ignition (HVAR)	PLC 6	-	UL 746
High voltage arc tracking rate (HVTR)	PLC 1	-	UL 746
Hot wire ignition	PLC 2	-	UL 746
Injection	Value	Unit	
Drying temperature	82	°C	
Drying time	3	h	
Necessary low maximum residual moisture content	0.08	%	
Suggested maximum regrind	20	%	
Rear temperature	177	°C	
Middle temperature	182	°C	
Front temperature	182	°C	
Nozzle temperature	188 - 221	°C	
Melt temperature	193 - 232	°C	
Mold temperature	10 - 52	°C	
Injection speed	fast	-	
Back pressure	0.345 - 0.689	MPa	
Screw Speed	100 - 200	RPM	
Clamp tonnage	41 - 69	MPa	
Cushion	3.18 - 6.35	mm	
Screw L/D	20:1/*	_	
Screw compression ratio	2.5:1/*	-	
Vent depth	0.025	mm	
Extrusion	Value	Unit	
Drying temperature	82	°C	
Drying time	3	h	
Melt temperature	196	°C	
Die head temperature	199	°C	
Back pressure	5 - 20	MPa	
Aging	Value	Unit	Test Standard
Change in Tensile Strength in Air @ 150 C, 168 h	-12	%	ASTM D573
Change in Tensile Strength in Air @ 150 C, 168 h	-12	%	ISO 188
Change in Ultimate Elongation in Air @ 150 C, 168 h	6	%	ASTM D573
Change in Tensile Strain at Break in Air @ 150 C, 168 h	6	%	ISO 188
Change in Durometer Hardness in Air @ 150 C, 168 h, Shore A	2	-	ASTM D573
Change in Shore Hardness in Air @ 150 C, 168 h, Shore A	2	-	ISO 188
Continuous Upper Temperature Resistance (CUTR) @ 1008 h	135	°C	SAE J2236
Flammability	Value	Unit	
Flame rating, 1.0 mm	НВ		UL 94
Flame rating, 1.5 mm	НВ		UL 94
Flame rating, 3.0 mm	НВ		UL 94

Other text information

Processing Notes

Desiccant drying for 3 hours at 80° C (180° F) is recommended. SantopreneTM TPV has a wide temperature processing window from 175 to 230° C (350 to 450° F) and is incompatible with acetal and PVC.

Created: 18-Feb-2022 Page: 2/3

Revised: 11-Feb-2022 Source: Celanese Materials Database

SANTOPRENE™ 201-64 - TPV

Other Approvals

 OEM
 Specification

 Chrysler (FCA)
 MS-AR-100 BGN

 FORD
 WSD-M2D379-A1

Contact

Americas

8040 Dixie Highway Florence, KY 41042 USA Product Information Service

t: +1-800-833-4882 t: +1-859-372-3244 Customer Service t: +1-800-526-4960

t: +1-859-372-3214 e: info-engineeredmaterials-am@celanese.com

Asia

 4560 Jinke Road
 Am Unisys-Park 1

 Zhang Jiang Hi Tech Park
 65843 Sulzbach, Germany

 Shanghai 201210 PRC
 Product Information Service

 Customer Service
 t: +49-800-86427-531

 t: +86 21 3861 9288
 t: +49-(0)-69-45009-1011

e: info-engineeredmaterials-asia@celanese.come: info-engineeredmaterials-eu@celanese.com

Europe

General Disclaimer

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products. The products mentioned herein are not intended for use in medical or dental implants.

Trademark

© 2021 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.

Created: 18-Feb-2022 Page: 3/3

Revised: 11-Feb-2022 Source: Celanese Materials Database